1 - Definition and properties

Logarithm: For a number and base, the power the base should have so that it is equal to the given number is called a logarithm.For example, the logarithm of 8 with base 2 means what power should 2 have so that it is equal to 8. 23=8, the answer is 3.

logarithm is represented as logb a where a and b are non-zero positive numbers.

Where a is the number inside the logarithmic function and b is the base. And we read it as log a base b.

Symbolically the above example can be represented as: Log2 8 =3

I) find the values for the following logarithms:

  1. log3 27
  2. log10 100
  3. log4 2
  4. log10 (0.1)

Solutions are at the end of the article.

Logarithm in fact is an inverse of exponential function. Let’s see how logarithm and exponents are interconvertible:

ab=x ------> b= loga x

Look at the example 23=8, this is represented as log2 8=3

This is how we interconvert exponents into logarithms and vice versa.

II) convert the following logarithms into exponents

  1. loga b = x
  2. log25 5= 1/2
  3. log3 9= 2

Solutions are at the end of the article.

Properties:

For a, b, x, y being postive non-zero numbers.

Product rule: Loga xy = loga x+ loga y

Quotient rule: Loga $\frac{x}{y}$ = loga x- loga y

Power rule: (i) logb $a^m$ = m logb a

Power rule: (ii) logbn a= $\frac{1}{n}$ logb a

logb a= $\frac{1}{log_a b}$

logb a= $\frac{log_x a}{log_x b}$

loga 1 = 0

Other properties:

loga a= 1

If logb a= logb c then a=c

logb $\frac{1}{a}$=log$\frac{1}{b}$ a= -loga a

aloga x = x

loga 0 is undefined

III) Solve the following logarithms:

  1. log5 x = log5 2 + log5 7
  2. logb x+logb 1/x
  3. log5 15 - log5 3
  4. log5 125
  5. log16 4

Solutions are at the end of the article.

Sometimes we drop bases in logarithms for base 10 and natural logarithms. Log10 a can be represented dropping 10 i.e. log a. And logarithm with natural base ’e’ can be represented as ln x (=loge x)

Solutions:

I

1) ans=3

Sol: log3 27 = log3 $3^3$

Using the property $log_b$ $a^n$ = n $log_b$ a

= 3log3 3

Using the property loga a=1

= 3

2) ans=2

Sol:

log10 100 = log10 $10^2$

Using the property logb $a^n$ = n logb a

= 2log10 10

Using the property loga a=1

=2

3) ans=½

Sol:

log4 2 = log22 2

Using the property logbn a = $\frac{1}{n}$ logb a

= $\frac{1}{2}$ log2 2

Using the property loga a=1

= $\frac{1}{2}$

4) ans=-1

Sol:

Log10 (0.1) = log10 $\frac{1}{10}$

Using the property Loga $\frac{x}{y}$ =loga x- loga y

= - log10 10

Using the property loga a=1 =-1

II)

  1. $a^x$
  2. 5= 25$\frac{1}{2}$
  3. 9= $3^2$

III)

1) x=14

Sol:

log5 x = log5 2 + log5 7

Using the property Loga xy=loga x+ loga y

log5 x = log5 2*7

Using the property if loga b=loga c then b=c

x=14

2) ans=0

Sol:

logb x+logb 1/x

Using the property Loga xy =loga x+ loga y

=logb x* $\frac{1}{x}$

=logb 1

Using the property Loga 1 = 0

=0

3) ans= 0

Sol:

log5 15 - log5 3

Using the property Loga $\frac{x}{y}$ =loga x- loga y

=Log5 $\frac{15}{3}$

= log5 5

Using the property Loga 1 = 0

=0

4) ans =3

Sol:

log5 125

=log5 $5^3$

Using the property logb an = n logb a

=3 log5 5

Using the property loga a=1

=3

5) ans =½

Sol:

log16 4

=log42 4

Using the property logbn a = $\frac{1}{n}$ logb a

=½ log4 4

Using the property loga a=1

2 - Proofs of Logarithmic properties

1) Product Rule: Loga xy = loga x+ loga y

proof:

let loga x = m, loga y = n

convert these logarithms into exponents

x=am and y=an

multiply the above equations

xy=am * an

Using the property bp * bq=bp+q from exponents we can write the above equation as follows

xy=am+n

Convert back into logarithm

loga xy = m+n

on substituting the values m= loga x and n =loga y we get

loga xy = loga x + loga y

2) Quotient Rule: Loga $\frac{x}{y}$ =loga x- loga y

proof:

let loga x = m, loga y = n

convert these logarithms into exponents

x=am and y=an

divide the above equations

$\frac{x}{y}$ = $\frac{a^m}{a^n}$

using the property bp/bq=bp-q from exponents we can write the above equation as follows

$\frac{x}{y}$=am-n

convert into logarithm

loga $\frac{x}{y}$=m-n

on substituting the m= loga x & n =loga y we get

loga (xy)=loga x - loga y

3) Power Rules:

i) logb $a^m$ = m logb a

Proof:

let x=logb a

convert logarithm into exponent

bx=a

taking both sides of the equation to m’th power

(bx)m=am

using the property (am)n=amn from exponents we can write the above equation as follows

bxm=am

convert back to logarithm

xm=logb am

substitute x=logb a back in the equation and interchanging

logb am = m logb a

ii) logbn a= $\frac{1}{n}$ logb a

proof:

let logbn a=x

convert this into exponential form

a=(bn)x

use exponential property

(am)n=amn=(an)m

a=(bx)n

use the property if am=b then a=b$\frac{1}{m}$ from exponents we can write the above equation as follows

a$\frac{1}{n}$=bx

interchanging and converting into logarithmic form

bx=a$\frac{1}{n}$

x=logb a$\frac{1}{n}$

substitute the value of x=logbn a and use logarithmic property logb am= m logb a

logbn a= $\frac{1}{n}$ logb a

4) log of 1 rule: logb 1=0

Proof:

from exponents we have:

b0=1

convert this into logarithmic form

0=b 1

5) Change of Base Rule: logb a= $\frac{log_x a}{log_x b}$

Proof:

let logx a=p, logx b=q

Convert these logarithms into exponential forms

a=xp and b=xq

Substituting in the Left hand side of the to solve into right hand side of the Rule

L.H.S. : logb a= logxn xm

Using the power rule: lognq ap= $\frac{p}{q}$ $log_b$ a

logb a= $\frac{p}{q}$ logx x

Using the Rule loga a=1

Logb a= $\frac{p}{q}$

Substituting the assumed p= $log_x$ a, q= $log_x$ b

Logb a= $\frac{log_x a}{log_x b}$

6) logb $\frac{1}{a}$ =log$\frac{1}{b}$ a= -logb a

Proof:

i) Logb (1/a)=logb a-1

Using the property loga bm=m loga b =-logb a

ii) log$\frac{1}{b}$ a=log$b^{-1}$ a

logb $\frac{1}{a}$ =log$\frac{1}{b}$ a= -logb a

7) aloga x = x

Proof:

Let p=aloga x

Converting the above exponent into logarithm

Loga p = loga x

Using he property if logb a= logb c then a=c

p=x

But we assumed p=aloga x

Therefore aloga x = x

3 - Practice Problems on logarithms

I) write the following in the logarithmic format

  1. $5^3$ = 125

  2. $2^4$ = 16

  3. $4^{-2}=\frac{1}{16}$

  4. $(\frac{1}{2})^{-3}=8$

  5. $\sqrt {81}$ = 9

  6. $x^{2a}=y$

II) convert the following logarithms into exponents

  1. x= $log_3\ y$

  2. $log_x\ 1$ =0

  3. ln x = 5

  4. $log\ 100=2$

  5. $log_8\ 2=\frac{1}{3}$

III) Find the values of x

  1. $log_5\ 25$ = x

  2. $log_{100}\ 1000$ = x

  3. $log_{23}\ 1$ = x

  4. $log_3\ \frac{1}{27}$ = x

  5. $log_x\ 49$ = 7

  6. $log_9\ x$ = -3

  7. $log_5\ \frac{1}{5}$ = x

  8. $log_8\ x=1- \frac{1}{2}$

  9. $log_{12}\ 1$ = x

  10. $log_{32}\ 2$ = x

  11. $log_4\ \frac{1}{32}$ = x

  12. $log_{12}\ \frac{1}{144}$ = x

IV) Write the following expressions in terms of logs of x, y and z

  1. log $x^3y$

  2. log $xyz$

  3. log $\sqrt[3]x y^2 z$

  4. log $\frac{x}{z^3}y$

  5. log $\sqrt[5]{x^3yz^2}$

  6. log $x \sqrt{ \frac{\sqrt{x^3y^2}}{z^4}}$

  7. log $(x^3y)^{\frac{1}{2}}$

  8. log $\frac{x^3}{y}$

V) Solve the following logarithmic equations

  1. ln x =-2

  2. log (7x+2) = 2

  3. log x + log (x+1) = log 4x

  4. 2log x = log 2 + log(3x-4)

  5. $log_3\ (x+3) + log_3\ (x+2) - log_3\ 10 = log_3\ x$

  6. $log_2\ x + log_2\ (x+3) = 1$

VI) If log 2= x, log 3 =y then express the following in x and y

  1. log 24

  2. log 225

  3. log 150

  4. $log_7\ 980$

  5. log 343

  6. log 12.5

  7. log 0.2

  8. log 15

  9. log 2.5

  10. $log_7\ 3.5$

VII) Solve the following equations

  1. $3^x$ - 1 =8
  2. $2^{2x}-2^x-6$=0
  3. $3^{1-x}=5^x$
  4. $3^{2x-1}+3{x+2}-18$=0
  5. $e^{2x}-2e^{x}-15$=0