Demo Test
Complex Numbers

Question 1 :


= Not visited = Visted but not answered = Saved answer = Mark for review
Let a,b be two real numbers such that ab < 0 . IF the complex number 1+aib+i is of unit modulus and a + ib lies on the circle |z - 1| = |2z| , then a possible value of 1+[a]4b , where [t] is greatest integer function, is :
1) (1+74)
2) 1/2
3) 0
4) -1
3
ans : 3
1+aib+i = 1 ⇒ |1 + ai | = |b+ i|
⇒ a 2 + 1 = b 2 + 1
⇒ a = b
⇒ ab < 0
⇒ (a + i b) lies on |z-1| = |2z|
⇒ |a + i b - 1| = 2 |a+ ib|
⇒ 6a2 + 2 a - 1 = 0
⇒ a = 1+76 and 1-76
⇒ [a] = 0
1+[a]4b = 0
⇒ similarly when a=176 and b=1+76
⇒ [a] = -1
1+[a]4b = 0 = 0
If the center and radius of the circle |z2z3|=2 are respectively (P,Q) and R , then 3(P+Q+R) is equal to
1) 12
2) 10
3) 11
4) 9
1
solution: ans : 1
|z - 2| = 2 |z-3|
⇒ x2 y 2 - 4x +4 = 4x2 4y 2 - 24x +36
⇒ x2 y 2 - 20/3x + 32/3 = 0
⇒ (P,Q) = (10/3 , 0) and using radius formula from the circles, we can find R = 2/3 therefore 3(P+Q+R) = 12
For two non-zero complex numbers z1 and z2 , if Re(z1z2) and , then which of the following are possible? A. Im(z1) > 0 and Im(z2) > 0 B. Im(z1) < 0 and Im(z2) > 0 C. Im(z1) > 0 and Im(z2) < 0 D. Im(z1) < 0 and Im(z2 ) < 0 Choose the correct answer from the options given below:
1) A & B
2) A & C
3) B & D
4) B & C
4
sol: ans : 4 Let, z1 = x1 + i y1 and z2 = x2 + i y2
⇒ z1z2 = x1x2 - y1y2 + i(x1y2 + x1y2)
Given, Re(z1 + z2) = 0
⇒ x1 + x2 = 0 x1x2 - y1y2 = 0 since x1 + x2 = 0 y1y2 = - xx2 So, multiplication of imaginary part's of z1 and z2 is negative. It means sign of y1 and y2 are opposite of each other. ∴ B and C are correct.
Let z be a complex number such that |z2iz+i|=2,zi . Then lies on the circle of radius 2 and centre
1) (0, -2)
2)(0,0)
3) (0,2)
4) (2,0)
1
sol: ans:1
|z2iz+i|=2

(z2i)(z¯+2i)=4(z+i)(z¯i)

2z¯+2iz2iz¯+4=4(zz¯zi+zi+1)

3zz¯6iz+6iz¯=0

2z¯2iz+2iz¯=0

center (2i) or (0,2)
Let z1 = 2 + 3 and z 2 = 3 + 4i . The set S={zC:|zz1|2|zz2|2=|z1z2|2} represents a
1) hyperbola with eccentricity = 2
2) straight line with the sum of its intercepts on the coordinates axes is -18
3) hyperbo;a with the length of transverse axis = 7
4) straight line with the sum of its intecepts on the coordinated axes = 14
4
sol: ans : 4
|zz1|2|zz2|2=|z1z2|2

(x2)2+(y3)2(x3)2(y4)2=1+1

4x+4+96y9+6x16+8y=2

2x+2y=14

x+y=7

The value of (1+sin2π9+icos2π91+sin2π9icos2π9)3 is:
1) 12(1i3)
2) 12(3i)
3) 12(1i3)
4) 12(3+i)
2
solution: ans: 2
z=(1+sin2π9+icos2π91+sin2π9icos2π9)3

1+sin2π9+icos2π9=1+cos5π18+isin5π18=1+2cos25π361+2isin5π36cos5π36=2cos5π36(cos5π36+isin5π36)=2cos5π36ei5π36z=32+12i=12(i3)=12(3i)

Let p,qR and (13i)200=2199(p+iq),i=1 then p+q+q2 and pq+q2 are roots of the equation.
1) x2+4x1=0
2) x24x+1=0
3) x2+4x+1=0
4) x24x1=0
2
sol: ans:2 (13i)200

=[2(1232i)]200

=2200(cosπ3isinπ3)200

=2200(cos200π3isin200π3)

=2200(cos(66π+2π3)isin(66θ+2π3))

=2200(cos2π3isin2π3)

=2200(1232i)

=2199(13i)

=2199(p+iq)

p = -1 and q = 3

pq+q2=1+3+3=2+3=α

p+q+q2=13+3=23=β

α+β=4

αβ=(2+3)(23)=43=1

x2(α+β)x+αβ=0

x24x+1=0

If z0 be a complex number such that |z1z|=2 , then the maximum value of |z| is :
1) 2
2) 1
3) 21
4) 2+1
4
solution: ans: 4

||z1||z2|||z1+z2||z1|+|z2|

||z|1|z|||z1z|

||z|1|z||2

||z|21|z||2

2|z|21|z|2

|z|21|z|2

|z|212|z|

|z|22|z|10

|z|22|z|+120

(|z|1)220

2|z|12

12|z|1+2 ------(1)

or

2|z|21|z|

|z|212|z|

|z|2+2|z|10

|z|2+2|z|+120

(|z|+1)220

2|z|+1+2

21|z|21 ------ (2) From (1) and (2) we get, Maximum value of |z|=2+1 and minimum value of |z|=21
Let S={z=x+iy:|z1+i||z|,|z|<2,|z+i|=|z1|} . Then the set of all values of x , for which w=2x+iyS for some yR , is
1) (2,122]
2) (12,14]
3) (2,12]
4) (12,122]
2
If z=2+3i , then z5+(z¯)5 is equal to :
1) 244
2) 224
3) 245
4) 265
1
ans: 1
z=(2+3i)

z5=(2+3i)((2+3i)2)2

=(2+3i)(5+12i)2

=(2+3i)(119120i)

=238240i357i+360

=122597i

z5=122+597i

z5+z5=244

Let S be the set of all (α,β),π<α,β<2π , for which the complex number 1isinα1+2isinα is purely imaginary and 1+icosβ12icosβ is purely real. Let Zαβ=sin2α+icos2β,(α,β)S . Then (α,β)S(iZαβ+1iZ¯αβ) is equal to :
1) 3
2) 3i
3) 1
4) 2 - i
3
solution: ans:3
1isinα1+2isinα is purely imaginary

1isinα1+2isinα+1+isinα12isinα=0

12sin2α=0

α=5π4,7π4

1+icosβ12icosβ

1+icosβ12icosβ1icosβ1+2icosβ=0

cosβ=0

β=3π2

S={(5π2,3π2),(7π4,3π2)}

Zαβ=1i

Zαβ=1i

(α,β)S(iZαβ+1iZαβ)=i(2i)+1i[11+i+11+i]

=2+1i2i2=1
Let the minimum value v0 of v=|z|2+|z3|2+|z6i|2,zC is attained at z=z0 . Then |2z02z¯03+3|2+v02 is equal to
1) 1000
2) 1024
3) 1105
1196
1
solution: ans: 1
z=x+iy

v=x2+y2+(x3)2+y2+x2+(y6)2

=(3x26x+9)+(3y212y+36)

=3(x2+y22x4y+15)

=3[(x1)2+(y2)2+10]

vmin

z=1+2i=z0

v0=30

|2(1+2i)2(12i)3+3|2+900

=|2(3+4i)(18i36i(12i)+3|2+900

=|6+8i(1+8i6i12)+3|2+900

=|8+6i|2+900

=1000
If z=x+iy satisfies |z|2=0 and |zi||z+5i|=0 , then
1) x+2y4=0
2) x2+y4=0
3) x+2y+4=0
4) x2y+3=0
3
sol: ans:3
|zi|=|z+5i|

So, z lies on bisector of (0,1) and (0,5) i.e., line y=2

|z|=2

z=2i

x=0

y=2

x+2y+4=0
If α,β,γ,δ are the roots of the equation x4+x3+x2+x+1=0 , then α2021+β2021+γ2021+δ2021 is equal to :
1) -4
2) -1
3) 1
4) 4
2
solution: ans= 2
x5=1

x51=0

(x1)(x4+x3+x2+x+1)=0

x4+x3+x2+x+1=0 has roots α , β , γ and 8.
Roots of x51=0 are 1, α , β , γ , 8.We know, Sum of pth power of nth roots of unity = 0. (If p is not multiple of n) or n (If p is multiple of n)
Here, Sum of pth power of nth roots of unity =1p+αp+βp+γp+8p={0;Ifpisnotmultipleof55;Ifpismultipleof5

p=2021 is not a multiple of 5.

12021+α2021+β2021+γ2021+82021=0

α2021+β2021+γ2021+82021=1
For nN , let Sn={zC:|z3+2i|=n4} and Tn={zC:|z2+3i|=1n} . Then the number of elements in the set {nN:SnTn=ϕ} is :
1) 0
2) 2
3) 3
4) 4
4
solution: ans: 4
Sn={zC:|z3+2i|=n4} represents a circle with centre C1(3,2) and radius r1=n4

similarly Tn represents circle with centre C2(2,3) and radius r2=1n

 As SnTn=ϕ

C1C2>r1+r2 OR C1C2<|r1r2|2>n4+1n OR 2<|n41n|n=1,2,3,4n may take infinite values 
The real part of the complex number (1+2i)8.(12i)2(3+2i).(46i) is equal to :

1) 50013
2) 11013
3) 556
4) 55013
4
solution: ans:4
(1+2i)8.(12i)2(3+2i).(46i)

=(1+2i)2(12i)2(1+2i)6(3+2i)(4+6i)

=(14i2)2(1+2i)612+18i+8i+12i2

=(1+5)2[(1+2i)2]312+26i12

=25(1+4i2+4i)326i

=25(14+4i)326i

=25(3+4i)326i

=2526i[(3)3+(4i)3+3.(3)2.4i+3(3).(4i)2]

=2526i(2764i+108i+144)

=2526i(117+44i)

=25i26i2(117+44i)

=25i26(117+44i)

=25×117i2625×44i226

=25×117i26+22×2513

=25×117i26+55013

real part =55013

Let α and β be the roots of the equation x2 + (2i - 1) = 0. Then, the value of |α 8 + β 8| is equal to:
1) 50
2) 250
3) 1250
4) 1500
1
solution: ans: 1
x2+(2i1)=0

x2=12i

as α and β are roots of the equation

α2=12i

β2=12i

α2=β2=12i

|α2|=12+(2)2=15

|α8+β8|

|α8+α8|

=2|α8|

=2|α2|4

=2(5)4

=2×25

=50
The area of the polygon, whose vertices are the non-real roots of the equation z=iz2 is :
1) 334
2) 332
3) 32
4) 34
1
sol: ans: 1
z=iz2

z=x+iy

xiy=i(x2y2+2xiy)

xiy=i(x2y2)2xy

x=2yx

x2y2=y

case - 1
x=0

y=12

x=0

y2=y

y=0,1

y=12
case - 2
x214=12x=±32

x={0,i,32i2,32i2}

area of polygon = =12|0113212132121|


=12|332|=334
Let z1 and z2 be two complex numbers such that z1=iz2 and arg(z1z2)=π . Then
1) argz2=π4
2) argz2=3π4
3) argz1=π4
4) argz1=3π4
3
solution: ans:3
z1z2=iz1=iz2

arg(z1)=π2+arg(z2)

arg(z1)arg(z2)=π

arg(z1)+arg(z2)=π

By solveing above equations we get, arg(z1)=π4 and arg(z2)=3π4
Let a circle C in complex plane pass through the points z1=3+4i , z2=4+3i and z3=5i . If z(z1) is a point on C such that the line through z and z1 is perpendicular to the line through z2 and z3, then arg(z) is equal to:
1) tan1(25)π
2) tan1(247)π
3) tan1(3)π
4) tan1(34)π
2
solution: ans: 2
z1=3+4i

z2=4+3i

z3=5i

Cx2+y2=25

Let z(x,y)
z(x,y)

(y4x3)(24)=1

y=2x2L

z is intersection of C and L

z(75,245)

Arg(z)=π+tan1(247)
If (3+i)100=299(p+iq) , then p and q are roots of the equation :
1) x2(31)x3=0
2) x2+(3+1)x+3=0
3) x2+(31)x3=0
4) x2(3+1)x+3=0
1
solution: ans:1 (2eiπ/6)100=299(p+iq)

2100(cos50π3+isin50π3)=299(p+iq)

p+iq=2(cos2π3+isin2π3)

p = −1

q = 3

x2(31)x3=0

If z and ω are two complex numbers such that |zω|=1 and arg(z)arg(ω)=3π2 , then arg(12zω1+3zω) is : (Here arg(z) denotes the principal argument of complex number z)
1) arg(12zω1+3zω)
2) π4
3) 3π4
4) π4
2
solution: ans: 2
3π4

|zω|=1



|z|=r

|ω|=1r

let arg(z)=θ

arg(ω)=(θ3π2)

z=reiθ

z=reiθ

ω=1rei(θ3π2)

now consider 12zω1+3zω=12ei(3π2)1+3ei(3π2)=(12i1+3i)

=(12i)(13i)(1+3i)(13i)=12(1+i)

prinarg(12zω1+3zω)

=prinarg(12zω1+3zω)

=(12(1+i))

=(ππ4)=3π4

The least value of |z| where z is complex number which satisfies the inequality exp((|z|+3)(|z|1)||z|+1|loge2)log2|57+9i|,i=1 , is equal to :
1) 8
2) 3
3) 2
4) 5
2
solution: ans: 2
Let |z| = t and t 0

e(t+3)(t1)t+1loge2log216=8 t+1 > 0

2(t+3)(t1)t+123

(t+3)(t1)t+13

t2+2t33t+3

t2t60

t(,2)[3,)



t[3,)
Let a complex number z, |z| 1, satisfy log12(|z|+11(|z|1)2)2 . Then, the largest value of |z| is equal to ____________.
1) 5
2) 8
3) 6
4) 7
4
solution: ans: 4 log12(|z|+11(|z|1)2)2

|z|+11(|z|1)212

2|z|+22(|z|1)2

2|z|+22|z|22|z|+1

|z|24|z|210

(|z|7)(|z|+3)0

|z|7



|z|max=7
If α , β R are such that 1 - 2i (here i2 = - 1) is a root of z2 + α z + β = 0, then (α - β ) is equal to :
1) -7
2) 7
3) 3
4) -3
1
solution: ans: 1
1 - 2i is the root of the equation. So other root is 1 + 2i Sum of roots = 1 - 2i + 1 + 2i = 2 = - α Product of roots = (1 - 2i)(1 + 2i) = 1 - 4i2 = 5 = β α - β = -7
Let the lines (2 - i)z = (2 + i)z and (2 + i)z + (i - 2)z - 4i = 0, (here i2 = - 1) be normal to a circle C. If the line iz + z + 1 + i = 0 is tangent to this circle C, then its radius is :
1) 322
2) 32
3) 122
4) 32
1
solution: ans:1
(2i)z=(2+i)z

(2i)(x+iy)=(2+i)(xiy)

2xix+2iy+y=2x+ix2iy+y

2ix4iy=0

L1:x2y=0

(2+i)z+(i2)z4i=0

(2+i)(x+iy)+(i2)(xiy)4i=0

2x+ix+2iyy+ix2x+y+2iy4i=0

2ix+4iy4i=0

L2:x+2y2=0

Solve L1 and L2: x = 1, 4y=2,y=12

x=1

centre (1,12)

L3:iz+z+1+i=0

i(x+iy)+xiy+1+i=0

ixy+xiy+1+i=0

(xy+1)+i(xy+1)=0

Radius = distance from (1,12) to xy+1=0



r=112+12



r=322
The value of (1+i31i)30 is :
- 215i
- 215
215i
65
1
solution: ans:1


(1+i31i)30

=(2ω1i)30

=230.ω30((1i)2)15

=230.1(1+i22i)15

=230.1215.i15

= - 215i
If a and b are real numbers such that (2+α)4=a+bα where α=1+i32 then a + b is equal to:
1) 33
2) 9
3) 24
4) 57
2
solution: ans: 2
α=ω

given α=1+i32

(2+ω)4=a+bω(ω3=1)

24+4.23ω+6.22ω3+4.2.ω3+ω4=a+bω

16+32ω+24ω2+8+ω=a+bω

24+24ω2+33ω=a+bω

24ω+33ω=a+bω

a=0,b=9
Let u=2z+izki , z = x + iy and k > 0. If the curve represented by Re(u) + Im(u) = 1 intersects the y-axis at the points P and Q where PQ = 5, then the value of k is :
2
4
1/2
3/2
1
solution: ans:1 given z =x + iy

u=2z+izki

=2(x+iy)+i(x+iy)ki

=2x+i(2y+1)x+i(yk)×xi(yk)xi(yk)

=2x2+(2y+1)(yk)+i(2xy+x2xy+2kx)x2+(yk)2

Given, Re(u)+Im(u)=1

2x2+(2y+1)(yk)x2+(yk)2+x+2kxx2+(yk)2=1

2x2+(2y+1)(yk)+x+2kx=x2+(yk)2

This curve intersect the y-axis at point P and Q, so at point P and Q x = 0 Putting x = 0 at the above equation, (2y+1)(yk)=(yk)2

2y2+y2ykk=y2+k22ky

y2+y(k+k2)=0

Let roots of this quadratic equation y1 and y2 Point P (0, y1) and Q (0, y2) y1+y2=1

y1y2=kk2

(y1y2)2=(y1+y2)24y1y2

=1+4k+4k2

|y1y2|=1+4k+4k2

Given PQ = 5 |y1y2|=5

1+4k+4k2=5

k2+k6=0

k=3,2

give k is greater than 0 so, k= 2
If z1 , z2 are complex numbers such that Re(z1) = |z1 – 1|, Re(z2) = |z2 – 1| , and arg(z1 - z2) = π6 , then Im(z1 + z2 ) is equal to :
1) 32
2) 13
3) 23
4) 23
4
solution: ans: 4
z1=x1+iy1,z2=x2+iy2

Given Re(z1) = |z1 – 1| x1 = |(x1 - 1) + iy1|

x1 (x11)2+y12



x12=(x11)2+y12

y122x1+1=0

Also given Re(z2) = |z2 – 1| x2 = |(x2 - 1) + iy2|

Performing equation (1) - (2), x22=(x21)2+y22



y222x21=0

(y12y22)+2(x2x1)=0



(y1+y2)(y1y2)=2(x1x2)



y1+y2=2(x1x2y1y2)

given, arg(z1z2)=π6



tan1(y1y2x1x2)=π6

y1y2x1x2=13

y1+y2=23
The imaginary part of (3+254)12(3254)12 can be :
1) -26
2) 6
3) 6
4) - 6
1
solution: ans:1

3+254

=96+254

=9+(6i)2+2.3.6i

=32+(6i)2+2.3.6i

=(3+6i)2

Similarly, (3254)=(36i)2

(3+254)12(3254)12

=±(3+6i)[±(36i)]

=6,6,26i,26i

Possible imaginary parts are 26i,26i
The value of (1+sin2π9+icos2π91+sin2π9icos2π9)3 is :
1) 12(3i)
2) -12(3i)
3) 12(1i3)
4) 12(1i3)
2
solution: ans: 2
(1+sin2π9+icos2π91+sin2π9icos2π9)3

=(1+sin(π25π18)+icos(π25π18)1+sin(π25π18)icos(π25π18))3

=(1+cos(5π18)+isin(5π18)1+cos(5π18)isin(5π18))3

=(2cos2(5π36)+2isin(5π36)cos(5π36)2cos2(5π36)2isin(5π36)cos(5π36))3

=(cos(5π36)+isin(5π36)cos(5π36)isin(5π36))3

=(ei5π36ei5π36)3

=(ei5π18)3

=ei5π18×3

=ei5π6

=cos5π6+isin5π6

=32+i2
Let z be complex number such that |ziz+2i|=1 and |z| = 52 . Then the value of |z + 3i| is :
1) 23
2) 10
3) 154
4) 72
4
solution: ans: 4
|ziz+2i|=1

|z – i| = |z + 2i|

(let z = x + iy) x2 + (y – 1)2 = x2 + (y + 2)2

y = 12

Also given |z| = 52

x2 + y2 = 254

x2 = 6

z = ±6 12i

|z + 3i| = 6+254 = 72
If Re(z12z+i)=1 , where z = x + iy, then the point (x, y) lies on a:
1) straight line whose slope is 32
2) straight line whose slope is 23
3) circle whose diameter is 52
4) circle whose centre is at (12,32)
4
solution: ans: 3
Re(z12z+i)=1

Put z = x + iy Re((x+iy)12(x+iy)+i)=1



Re(((x1)+iy2x+i(2y+1))(2xi(2y+1)2xi(2y+1)))=1



Re({(x1)+iy}{2xi(2y+1)}4x2+(2y+1)2)=1

Real part of this equation is = 1 2x(x1)+y(2y+1)4x2+(2y+1)2

2x2 + 2y2 +2x + 3y + 1 = 0

This is an equation of circle. Locus is a circle whose center is (12,34) and radius 54

Diameter = 2 ×

54

= 52
Let z 2zn2z+n C with Im(z) = 10 and it satisfies = 2i - 1 for some natural number n. Then :
1) n = 20 and Re(z) = -10
2) n = 40 and Re(z) = 10
3) n = 40 and Re(z) = -10
4) n= 20 and Re(z) = 10
3
solution: ans: 3

Let Re (z) = x, then 2(x+10i)n2(x+10i)+n=2i1

(2xn)+20i=(2x+n)4020i+2ni

2xn=2xn40

& 20 = -20 + 2n x = -10 & n = 20
The equation |z – i| = |z – 1|, i = 1 , represents :
1) a circle of radius of 1
2) the line through the origin with slope -1
3) a circle of radius 12
4) the line through the origine with slope 1
4
solution: ans: 4

Let the complex number z = x + iy Now given | (x + iy) - 1 | = | (x+iy) - i | (x - 1)2 + y2 = x2 + (y - 1)2 x = y
If z and w are two complex numbers such that |zw| = 1 and arg(z) – arg(w) = π2 , then:
1) zw=1i2
2) zw=i
3) zw=1+i2
4) zw=i
4
solution: ans: 4 |zw|=1

let w=1reiθ

then z = rei(θ+π2)

zw=ei(θ+π2).eiθ=ei(π/2)=i

zw=ei(θ+π2).eiθ=eiπ/2=i
If a > 0 and z = (1+i)2ai , has magnitude 25 , then z is equal to :
1) 15+35i
2) 1535i
3) 1535i
4) 3515i
2
solution: ans: 2
z=(1+i)2ai×a+ia+i

z=(11+2i)(a+i)a2+1=2ai2a2+1

|z|=(2a2+1)2+(2aa2+1)2=4+4a2(a2+1)2

4(1+a2)(a2+1)2=2a2+1 -------(1)

given |z|=25

so 25=21+a2 from equation(1)

25=41+a2

1+a2=10

a = ± 3

a is greater than 3 a = 3
z=(1i)23+i

(1+i22i)3+i

(1+i22i)(3i)(3+i)(3i)

(2i)(3i)(9i2)

(2i)(3i)10

6i+2i210

6i210

1535i

Let z=a+ib,b0 be complex numbers satisfying z2=z¯21z . Then the least value of nN , such that zn=(z+1)n , is equal to __________.
6
solution: ans: 6

z2=z.21|z|

|z|2=|z|.21|z| ----(1)

|z|=21|z|

b0|z|0

|z|=1 ---(2)

z=a+ib then a2+b2=1 -----(3)

Now again from equation (1), equation (2), equation (3) we get : a2b2+i2ab=(aib)20

a2b2=a and 2ab=b

a=12 and b=±32

z=12+32i or z=1232i

zn=(z+1)n(z+1z)n=1

(1+1z)n=1

(1+3i2)=1

then the minimum value of n is 6
Let S={zC:z2+z¯=0} . Then zS(Re(z)+Im(z)) is equal to ______________.
0
solution: ans = 0

z2+z=0

Let z=x+iy

x2y2+2ixy+xiy=0

(x2y2+x)+i(2xyy)=0

x2+y2=0 and (2x1)y=0

if x=+12 then y=±32

and if y=0

then x=0,1

z=0+0i,1+0i,12+32i,1232i

(Re(z)+m(z))=0
If z2+z+1=0 , zC , then|n=115(zn+(1)n1zn)2| is equal to _________.
2
solution: answer = 2

z2+z+1=0

ω or ω2

|n=115(zn+(1)n1zn)2|

=|n=115z2n+n=115z2n+2.n=115(1)n|

=|0+02|

=2
Let z=1i32 , i=1 . Then the value of 21+(z+1z)3+(z2+1z2)3+(z3+1z3)3+....+(z21+1z21)3 is ______________.
13
solution: answer = 13

z=13i2=eiπ3

zr+1zr=2cos(π3)r=2cosrπ3

21+r=121(zr+1zr)3=8(cos3rπ3)=2(cosrπ+3cosrπ3)

21+(z+12)3+(z2+1z2)3+....(z21+1z21)3

=21+r=121(zr+1zr)3

=21+r=121(2cosrπ+6cosrπ3)

=2126

=13
If the real part of the complex number z=3+2icosθ13icosθ,θ(0,π2) is zero, then the value of sin 2 3 θ + cos 2 θ is equal to _______________.
1
solution: ans = 1
since Re(z) = 0, calculate the real part of the z and equate it to zero

z=3+2icosθ13icosθ . 1+3icosθ1+3icosθ

on solving this we get θ = π4 so sin 2 3 θ =1
Let z1, z2 be the roots of the equation z2 + az + 12 = 0 and z1, z2 form an equilateral triangle with origin. Then, the value of |a| is
6
solution: ans=6

For equilateral triangle with vertices 1, z2 and z2, z12+z22+z33=z1z2+z2z3+z3z1

Here one vertex z3 is 0

z12+z22=z1z2+0+0

z2+az+12=0

z1+z2=a

z1z2=12



z12+z22+2z1z2=z1z2+2z1z2

(z1+z2)2=3z1z2

(a)2=3×12

a2=36

a=±6

|a|=6
Let z and ω be two complex numbers such that ω=zz2z+2,|z+iz3i|=1 and Re(ω ) has minimum value. Then, the minimum value of n N for which ωn n is real, is equal to ______________.
4
solution: ans = 4

Let z = x + iy | z + i | = | z 3i |

y = 1

ω = x2 + y2 - 2x - 2iy + 2

ω = x2 + 12 - 2x - 2i + 2

Re(ω) = x 2 - 2x + 3

Re(ω) = (x - 1) 2 + 2

Re(ω)min at x = 1 z = 1 + i



ω = 2(1 - i) = 2ei(π4)

ωn = 2ei(nπ4)

for ωn to be real least value of n in N must be 4
If the least and the largest real values of a, for which the equation z + α |z – 1| + 2i = 0 (z ∈ C and i 2= - 1 ) has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
10
solution: ans = 10


x+iy+α(x1)2+y2+2i=0

y + 2 =0 x+α(x1)2+y2=0

y = 2 and

x2=α2(x22x+1+4)

α2=x2x22x+5x2(α21)2xα2+5α2=0

xRD0

4α44(α21)5α20

α2[4α22α2+20]0

α2[16α2+20]0

α2[α254]0

0α254

α2[0,54]

α[52,52]

4[(q)2+(p)2]=4[54+54]=10

If (1+i1i)m2=(1+i1i)n3=1 , (m, n N) then the greatest common divisor of the least values of m and n is _______ .
4
(1+i1i)m/2=(1+i1i)n/3=1

((1+i)22)m/2=((1+i)22)n/3=1

(i)m/2=(i)n/3=1

m2=4k1andn3=4k2

m = 8 k1 and n = 12 k2

Least value of m = 8 and n = 12.



GCD (8, 12) = 4
Let i=1 . If (1+i3)21(1i)24+(1+i3)21(1+i)24=k , and n=[|k|] be the greatest integral part of | k |. Then j=0n+5(j+5)2j=0n+5(j+5) is equal to _________.
310
Solution: ans = 310

(1+i)2=1+i2+2i=11+2i=2i

(1i)2=1+i22i=112i=2i

we know, 12+i32=ω

1+i3=2ω

and 12i32=ω2

1i3=2ω2

1+i3=2ω2

K=(1+i3)21(1i)24+(1+i3)21(1+i)24

=(2ω)21((1i)2)12+(2ω)21((1+i)2)12

=221.ω21(2i)12+(2)21(ω2)21(2i)12

ω3=1

i4=1

=221212221212=0

n=[|K|]=[|0|]=0

j=05(j+5)2j=05(j+5)

j=05(j2+25+10jj5)

j=05(j2+9j+20)

j=05j2+9j=05j+20j=051

5×6×116+9(5×62)+20×6

= 310